System beta and system A amino acid transporters in the feline endotheliochorial placenta.

نویسندگان

  • E E Champion
  • S J Mann
  • J D Glazier
  • C J P Jones
  • J M Rawlings
  • C P Sibley
  • S L Greenwood
چکیده

There is no knowledge of the transport mechanisms by which solutes cross the cat placenta or any other endotheliochorial placenta. Here, we investigated whether the amino acid transport systems beta and A are present in the cat placenta using a placental fragment uptake technique. Data were compared with studies in the human placenta, in which the presence of these two transport systems has been well established. A time course of [(3)H]taurine (substrate for system beta) and [(14)C]MeAIB (nonmetabolizable substrate for system A) uptake was determined in the term cat and human placental fragments in the presence and absence (choline substituted) of Na(+), and further studies were carried out over 15 min. Taurine uptake into both cat and human placenta fragments was found to be Na(+) and Cl(-) dependent, and Na(+)-dependent taurine uptake was blocked by excess beta-alanine. MeAIB uptake was found to be Na(+) dependent, and Na(+)-dependent MeAIB uptake was blocked by excess MeAIB or glycine. Western blotting and immunohistochemistry performed on cat and human placenta showed expression of TAUT and ATA2 (SNAT2), proteins associated with system beta and system A activity, respectively. This study therefore provides the first evidence of the presence of amino acid transport systems beta and A in the cat placenta.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

System and System A amino acid transporters in the feline endotheliochorial placenta

E. E. Champion, S. J. Mann, J. D. Glazier, C. J. P. Jones, J. M. Rawlings, C. P. Sibley, and S. L. Greenwood Academic Unit of Child Health, University of Manchester, St. Mary’s Hospital, Manchester, M13 OJH; Waltham Centre for Pet Nutrition, Waltham on the Wolds, Melton Mowbray, Leicestershire, LE14 4RT; and Academic Unit of Obstetrics and Gynaecology, University of Manchester, St. Mary’s Hospi...

متن کامل

Expression and functional characterisation of System L amino acid transporters in the human term placenta

BACKGROUND System L transporters LAT1 (SLC7A5) and LAT2 (SLC7A8) mediate the uptake of large, neutral amino acids in the human placenta. Many System L substrates are essential amino acids, thus representing crucial nutrients for the growing fetus. Both LAT isoforms are expressed in the human placenta, but the relative contribution of LAT1 and LAT2 to placental System L transport and their subce...

متن کامل

Isolation of Plasma Membrane Vesicles from Mouse Placenta at Term and Measurement of System A and System β Amino Acid Transporter Activity

Placental amino acid transport is essential for optimal fetal growth and development, with a reduced fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR). Understanding placental insufficiency related FGR has been aided by the development of mouse models that have features of the human disease. However, to take maximal advantage of these, method...

متن کامل

The Role of Mammalian Target of Rapamycin in the Regulation of Amino Acid Transporters in the Human Placenta

Abnormal fetal growth, which is associated with both perinatal morbidity as well as metabolic diseases in adulthood, is an important clinical problem affecting as many as 15% of all pregnancies. However, to this date, there is no specific treatment of this condition. Fetal growth is intimately linked to the nutrient transport functions of the placenta and placental amino acid transporter activi...

متن کامل

Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling.

Inhibition of mammalian target of rapamycin (mTOR) signaling in cultured human primary trophoblast cells reduces the activity of key placental amino acid transporters. However, the upstream regulators of placental mTOR are unknown. We hypothesized that glucose, insulin, and IGF-I regulate placental amino acid transporters by inducing changes in mTOR signaling. Primary human trophoblast cells we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 287 6  شماره 

صفحات  -

تاریخ انتشار 2004